
Basic Shell Scripting

Important things to keep in mind.

- Linux is case sensitive. (for example: a "PATH" is not the same as "path")

- Make sure that your scripts have #!/usr/bin/bash as the first entry
 on the first line of the script.

- Scripts are read sequentially, so Line after line.

- It is a good idea to start your scripts with variables and then functions
 and then the main part of the script.

- It is best practise to add comments to what commands do in your script so
 that other know what is meant to happen.

- If you get stuck in any way, use the internet or ask your neighbour to help.

VARIABLES

There are different types of variables:

- Regular variables

A regular variable is set in the process of each shell independently. Some regular variables are
set by default and should not be changed by the user.

For example: PWD, SHELL, PID and more are set by the system.

Users can set their own variables. They will only be set in the shell the user sets them in. They
will not be set in the shell of another user.

For example: MYVAR=abcd
 counter=100
 times=2

Regular variables can also be set in the script by asking the user to fill them. This is done by
using the 'read' command.

For example: read MYVAR

read counter

- Positional parameters

A positional parameter is passed as an argument to the script you start.

For example: ~/myscript param1 param2 param3
In this example you can use the variables param1 param2 and param3

The names of positional parameters depend on the position when you start the script.
In the above example ~/myscript is $0, param1 is $1 et cetera.

If the user does not pass the variables when starting the script, you can use the 'read' command
to fill them and then use the 'set' command to set the parameters.

For example: read first
 read second
 set $first $second

Now $1 contains the value of $first and $2 contains the value of $second

- Special variables

Special variables are set automatically. The user does not set them.
 $! (The PID of the last background process started by the shell)
 $? (The return code of the exited child process)
 $* (the value of all positional parameters)
 $# (the number of positional parameters)
 $$ (the PID of the current shell)
 $_ (the last argument of the last started command)

ALIASES and FUNCTIONS

Aliases and Function have the same purpose. The difference is that an alias is always a single
line. It is like putting a command or a sequence of commands in a single variable. A function is
like a script that you create in the shell and not on disk.

For example: alias ll=”ls -l”
 alias dir1=”cd /home/rocky/ ; pwd”

 function list {
 ls ~
 echo “these are the files in your login dir.”
 echo -n “are you happy with this?”
 read ANSWER
 echo “Thanks.”
 }

 function cleanup {
 clear
 echo “bye”
 sleep 2
 exit
 }

Usage of functions in scripts is very common. When you have repetitive sequences of
commands, it is best practise to create functions so that you can simply call the functions in the
script instead of having to run a collection of commands multiple times.

 test and while

The test instruction tests whether something is true or not. For example, to test whether the
value of a particular variable is greater, less then or equal to a number.

var=10
[$var -lt 20]
echo $?
0

This checks whether the value of the var variable is less than 20 or not. If it is less than 20 the
return code will be 0 (so it is true), if it is not less than 20 the return code will be 1 (which is
false).

Another example: check whether a file is executable or not.

ls -l f1
-rw-r--r--. 1 root root 0 Mar 12 19:12 f1
[-x f1]
echo $?
1

The test command is commonly used with another command like for example the while
command. The while command will run one or more commands as long as the outcome of the
test command is true.

For example: to display a variable until it drops below a particular value.

var=10
while [$var -gt 9]
> do
> echo $var is greater than 9
> read var
> done

Another example. This is an infinite loop. The true command always returns 0. So 0 is always
true and true is always 0.

while true
> do
> echo true is always true
> sleep 2

> done
true is always true
true is always true
true is always true
true is always true
^C

 The if command

The if command is a form of branching. This means that, based upon a particular check, the
command will perform one set of action or another set of actions.

So for example: the script asks a user to choose between “yes” or “no”. If the user types yes,
then the script will other commands than if the user types no.

To determine which branch to take, the if command checks whether something is true or not,

So, for example. to check whether the user enter “yes” or “no”, you could use the following
commands:

echo -n “enter yes or no”
read answer
if [$answer == yes]
then
 echo “you entered yes”
else
 echo “you entered no”
fi

In the above example the test command returns true or false. Depending on that outcome the if
command takes one branch or the other.

Another example: You want to check whether a file exists or not and if it does not exist your
have to create it.

if ls myfile 2> /dev/null
then
 echo “myfile exists”
else

touch myfile
fi

The if statement in the above script checks whether the ls command returns a 0 or not, and
acts upon that.

 :

The case command

The case command is like the if command. It checks whether something is true or not. This
command is very often used to create a menu.

First an example:

clear
echo "1=reboot"
echo "2=halt"
echo "3=exit"
echo -n "input : "
read input

case $input in
1)reboot;;
2)halt;;
3)exit;;
*)echo "incorrect choice";;
esac

The above script first displays a menu, then asks for input.
If the input is 1 the reboot command will be run; if 2, the halt command will be run; if 3 the script
wil exit; if anything else, an error will be shown.

The for loop

The for loop will run one or more commands multiple times.
For example, if you want to run display the value of a variable for a predefined number of times:

for var in a b c d e f g
> do
> echo $var
> done
a
b
c
d
e
f
g

Another example. Run the echo command 10 times.

for number in {1..10}
> do
> echo $number
> done
1
2
3
4
5
6
7
8
9
10

The above example could also be like this:

for number in 1 2 3 4 5 6 7 8 9 10
>do
>echo $number
done

A practical example. In a directory you want to rename all files by adding .txt to the name.
NOTE! $(ls) is instruction substitution and in this case it will list all files in a directory and
rename each file by adding .txt.

ls
a b c d

for name in $(ls)
> do
> mv $name $name.txt
> done

ls
a.txt b.txt c.txt d.txt

Debugging scripts

To help you finding mistakes in your script you can add the following line at the top of your
script: set -x

This will print how commands are executed.
For example. The following script asks for a number less than 10.

#!/usr/bin/bash
set -x
echo -n "enter a number that is less than 10 : "
read num
if [$num -lt 10]
then
 echo "ok"
else
 echo "not ok"
fi

And when you run the script it will tell you what it does.

./check
+ echo -n 'enter a number that is less than 10 : '
enter a number that is less than 10 : + read num
4
+ '[' 4 -lt 10 ']'
+ echo ok
ok

