STORAGE FABRIC

Storage Capabilities

Storage Constructs

Reads and Writes

Failures

CAPABILITIES

Capabilities listed

- Intelligent Tiering
- Data Locality
- Automatic Disk Balancing
- Data Path Redundancy

INTELLIGENT TIERING

- Continuously monitors data access patterns
 - Optimizes placement on HDD or SSD tier
 - No Administrative intervention
 - Maximum performance for hot data and random I/O
 - Maximum capacity for cold data and sequential I/O

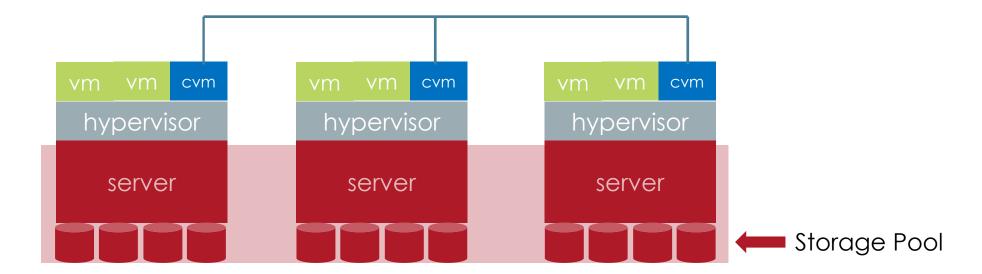
DATA LOCALITY

- Store the data of a VM to on the node that runs the VM
 - This prevents I/O to go through the network
 - Optimizes performance
 - Data follows the relocation of a VM based on read patterns
 - when the VM is moved
 - during an HA event

AUTOMATIC DISK BALANCING

- Allows for different workloads and different node types
 - When storage utilization on a node crosses a threshold
 - Movement of data always between to same storage tier
 - Different storage capacities of nodes are taken into account (compute-heavy vs. storage-heavy nodes)

DATA PATH REDUNDANCY

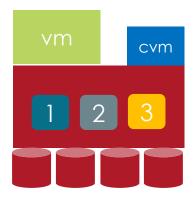


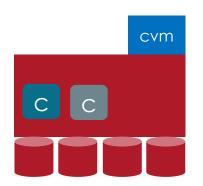
- In the case of an CVM unavailability
 - Requests are rerouted to a healthy CVM on another node
 - Failover is fully transparent to hypervisor and applications

STORAGE POOLS

- A collection of different drive types spanning multiple nodes
- CVMs communicate and create a single storage pool (clusterwide)

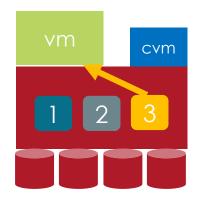
STORAGE CONTAINER

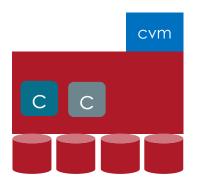

- A container is logical segmentation of the storage pool
- A container contains a group virtual disks (vdisks)
- Thin provisioned
- Can be compared to a 'Vmware datastore'

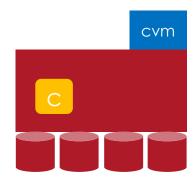


WRITING IO

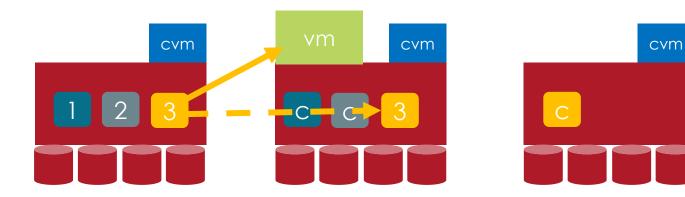
- Data is written to the local node the VM is running on
- With **replication factor 2**, data will be written to two locations
- In the example the original copy is written to the first node The second copy is written to another node in the cluster






READING IO

Data is read from the node on which the VM resides



READING 10

- When data is read from another node the data will then be copied
- In this example the vm has migrated to the second node and the data was on the first node

STORAGE CONSTRUCTS LISTED

- Storage Pool
- **Storage Container**
- vDisk
- Volume Group

STORAGE CONSTRUCTS LISTED

- vBlock
- Extent
- Extent Group
- OpLog

BOOT DRIVE FAILURE

- CVM will fail
- Other VMs are unaffected
- Data Path Redundancy will redirects the path to another CVM

DATA DRIVE FAILURE

- Single drive failure will not result in data loss
- Cluster create a new replica of the data
- With replication factor 2, losing a second drive can result in data loss

CVM FAILURE

- Address becomes unavailable
- Data traffic is redirected transparantly
- Self-healing will transfer traffic back to original CVM when it is back

HOST FAILURE

- HA-protected VMs are restarted on other nodes
- Stargate will start migrating extents
- Curator instructs Stargate to create a new replicas

STORAGE CONTAINERS

- Three default storage containers
 - NutanixManagementShare
 - SelfServiceContainer
 - Default-container

UPDATING STORAGE CONTAINERS

- Some conditions when updating a Storage Container
 - Cannot be renamed through the Update Storage Container dialog
 - Cannot be renamed if it contains valisks
 - Replication factor cannot be changed when updating the Storage Container

RESERVED AND ADVERTISED CAPACITY

- By default a Storage Container can use all capacity in a Storage Pool
 - Reserved Capacity reserves a minimum amount of space
 - Advertized Capacity sets the maximum amount of space
 - Advertized Capacity should be larger than Reserved Capacity

RESERVED AND ADVERTISED CAPACITY

- By default a Storage Container can use all capacity in a Storage Pool
 - Reserved Capacity reserves a minimum amount of space
 - Advertized Capacity sets the maximum amount of space
 - Advertized Capacity should be larger than Reserved Capacity

STORAGE OPTIMIZATION FEATURES

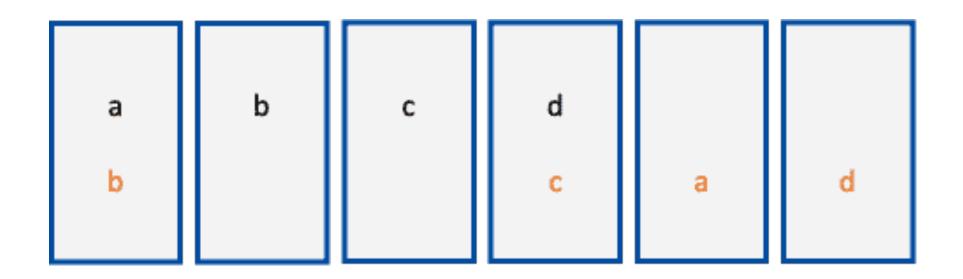
- Compression
- Deduplication
- **Erasure Coding**

COMPRESSION

- Inline and post-process
- Inline compression is enabled by default
- Large I/O and sequential I/O is not treated the same as random data

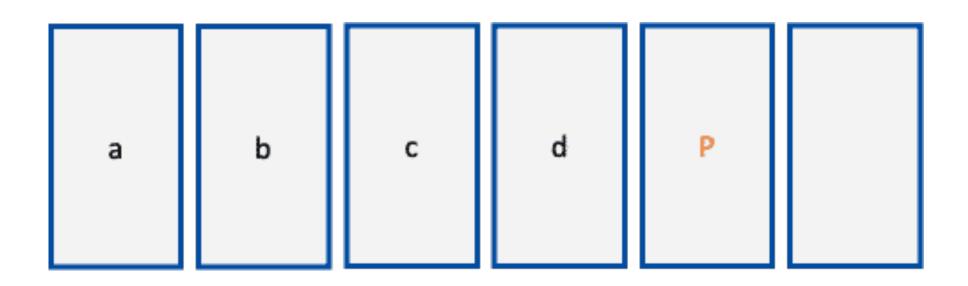
DEDUPLICATION

- Dupliate blocks are consolidated
- Not enabled by default
- Cache deduplication
- Capacity deduplication
- Additional RAM needed for CVM


ERASURE CODING

- Increases usable disk space without compromising resilience
- Stripes individual blocks across nodes
- Data blocks and parity blocks
- Most suitable for cold data, archives and backups

COPY EXAMPLE



- 6-node cluster
- Redundancy factor 2

ERASURE CODING EXAMPLE

- Parity is calculated
- Copies are removed and replaced by Parity block

SUMMARY

- Dataprotection
- Reads and writes
- Failover and optimalization